Finden Sie schnell optische 3d für Ihr Unternehmen: 95 Ergebnisse

Optische Linsen

Optische Linsen

Edmund Optics bietet den weltweit größten Bestand an Standard-Optikkomponenten, beispielsweise Achromate oder Asphären sowie unterschiedlichen Beschichtungen für UV-, sichtbares oder IR-Licht. Optische Linsen sind Optikkomponenten zur Bündelung oder Streuung von Licht. Optische Linsen können aus einem oder mehreren Elementen bestehen und werden in vielen Anwendungen, von der Mikroskopie bis zur Laserbearbeitung, eingesetzt. In vielen Branchen werden optische Linsen eingesetzt, beispielsweise in den Life Sciences, in der Bildverarbeitung, in der Industrie oder in der Verteidigungstechnik. Wenn Licht eine Linse passiert, wird es entsprechend dem Substratmaterial und der Form der Linse verändert. Eine plankonvexe (PCX-) Linse oder doppelkonvexe (DCX-) Linse fokussiert Licht auf einen Punkt, eine plankonkave (PCV-) Linse oder doppelkonkave (DCV-) Linse streut das Licht, das durch die Linse fällt. Achromate eignen sich ideal für Anwendungen, bei denen eine Farbkorrektur erforderlich ist. Asphären sind für minimale sphärische Aberration optimiert. Linsen aus Germanium (Ge), Silizium (Si), oder Zinkselenid (ZnSe) eignen sich ideal zur Transmission des Infrarot-(IR)-Spektrums, Quarzglas ist am besten für ultraviolettes Licht (UV) geeignet. Achromate: Für die Fluoreszenzmikroskopie, Bildverarbeitung, Inspektion oder Spektroskopie Asphären: Einsatzgebiete wie Barcodescanner, zur Laserdiodenkollimation sowie für OEM- oder R&D-Anwendungen PCX Linsen: Für die Industrie, Pharmazie, Robotik oder Verteidigungstechnik DCX Linsen: Für Relaisoptiken oder zur Bildgebung bei kurzen Bild- und Objektweiten PCV Linsen: Zur Strahlaufweitung, Lichtprojektion oder zur Verlängerung der Brennweite eines optischen Systems DCV Linsen: Zur Strahlaufweitung, Lichtprojektion oder zur Verlängerung der Brennweite eines optischen Systems Zylinderlinsen: Um einfallendes Licht auf eine Linie zu fokussieren oder um das Seitenverhältnis einer Abbildung zu verändern Laserlinsen: Zur Fokussierung von kollimierten Laserstrahlen in diversen Laseranwendungen IR-Linsen: Zur Sammlung, Fokussierung und Kollimation von Licht des nahen, kurzwelligen, mittleren und langwelligen Infrarotspektrums UV-Linsen: Zur Kollimation, Fokussierung oder in Laseranwendungen
Dichroitischer Beleuchtungsfilter FS Mauve 480630

Dichroitischer Beleuchtungsfilter FS Mauve 480630

Dichroitischer Beleuchtungsfilter für klassische Leuchtmittel und für LED. Diese Farbfilter für Beleuchtungsanwendungen sind aus Glas gefertigt und damit extrem langlebig und hitzebeständig. Die mineralische Nanobeschichtung verändert ihren Farbton über die gesamte Lebensdauer des Filters nicht. Dadurch sind unsere Filter besonders für permanente Beleuchtungen und den Einsatz im Außenbereich geeignet.
allPIXA evo

allPIXA evo

Die allPIXA evo Zeilenkamera bietet mit der Dual 10 GigE Schnittstelle beste Voraussetzungen für die Integration in Maschinen und Anlagen: Kabellängen von mehr als 300 m (faseroptisch) sowie hohe Zeilenraten von bis zu 48 kHz bei 10.240 Pixel und 32 kHz bei 15.360 Pixel in voller Farbauflösung (RGB). Ausgestattet mit Zeilen- und Frame-Trigger-Optionen, variablem Encoder-Eingang und Farbkonvertierungsmöglichkeiten ist die allPIXA evo die beste Wahl für alle Hochgeschwindigkeits- und hochauflösenden Bahn- und Druckinspektionsanwendungen. Zur einfachen Integration wird die allPIXA evo mit einem intuitiven grafischen Werkzeug und einem SDK für die Kamerasteuerung und Bilderfassung für Windows und Linux geliefert. Sensortyp: Quadlinearer CMOS Farbzeilensensor Anzahl der Pixel: 10.240 Pixel x 4 Pixelgröße: 5,6 µm x 5,6 µm Max. Zeilenrate: 52 kHz Datenformat: 3 x 8/10/12 Bit (RGB)
DYE-FD-08

DYE-FD-08

Frequenzverdoppelter durchstimmbarer Farbstofflaser. Frequency doubled tunable dye laser. Der schmalbandige Farbstofflaser mit Intracavity-Frequenzverdopplung, Modell DYE-FD-08, ist für die Durchführung von Spektraluntersuchungen im Bereich der Physik und Nanotechnologie gedacht. Die verwendeten Farbstoffe im DYE-FD-08 haben einen Arbeitsspektralbereich von 520 bis 700 nm (Wellenlängen der fundamentalen) und 260-350 nm (Wellenlängen der zweiten Harmonischen). Die Breite der Emissionslinie beträgt 0,05–0,01 nm, abhängig von der verwendeten optischen Elementen. Wird der Laser mit 10 W gepumpt, so erreicht die Leistung der fundamentalen Strahlung 1,5 W. Die Leistung der zweiten harmonischen übersteigt dabei 200 mW. Im Farbstofflaser DYE-FD-08 ist ein linearer Resonator mit einer zusätzlichen Strahltaille für einen nichtlinearen Kristall verbaut, sodass sich die Strahlung der zweiten Harmonischen in beide Richtungen des nichtlinearen Kristalls ausbreitet. Um die Strahlung der zweiten Harmonischen in eine Richtung zu lenken (zum Ausgang des Laserresonators), werden dichroitische Spiegel verwendet: Der M4-Spiegel reflektiert die fundamentale Strahlung und die Strahlung der zweiten Harmonischen vollständig und der M5-Spiegel ist für die fundamentale Strahlung vollreflektierend, jedoch lässt dieser die zweite harmonische durch (T > 80-85%). Somit kann der M5-Spiegel die Strahlung der zweiten harmonischen aus dem Resonator rauslassen, und gleichzeitig die fundamentale weiterhin im Resonator "einschließen". Wellenlänge: 520-700 nm / 260-350 nm Ausgangsleistung: > 1,5 W / 0,2 W Linienbreite: 0,01-0,05 nm
Achsmessanlage Carline CL 20 Achsmessgeräte mit Lasertechnik

Achsmessanlage Carline CL 20 Achsmessgeräte mit Lasertechnik

Achsmessanlage Carline CL 20 für Pkw, LLkw, Transporter, Wohnmobile und Off-Road ab 2699 Euro Preiswerter Einstieg in die Achsvermessung, einfach zu Bedienen, kostengünstig im Betrieb! Funktionsweise: Laser System: 4-Radvermessung
ARGUS Identifikation

ARGUS Identifikation

Die sichere Identifikation von Codes durch optische Kontrollen gehört zu den Kernkompetenzen von Laetus. Wo immer Codes zu kontrollieren sind, erfüllt ARGUS die Anforderungen schnell und sicher. Das ARGUS System ist ein modulares, netzwerkgestütztes Kontrollsystem für die sichere Code- und Druckkontrolle im Verpackungsprozess. Die Codierung von Produkten ist die einfachste und effizienteste Form der Kontrolle. Mit ARGUS decken wir das ganze Spektrum der Codelesung ab: vom einfachen Barcode, über den mehrfarbigen Pharmacode und den GS1 Databar bis zum 2D Data Matrix- und QR-Code. Selbstverständlich gehört auch die Erkennung der Farbringcodes auf Ampullen zu unserem Portfolio.
Meterriss - Achs - Plaketten RS10 / RS11*

Meterriss - Achs - Plaketten RS10 / RS11*

RS10 bzw. RS11* werden zur Sicherung des Meterrisses bei Baustellen ohne Putzarbeiten und in Tür- oder Fensterleibungen eingesetzt. Zur dauerhaften Sicherung der Achsen bis zur Gebäudefertigstellung werden die Plaketten bereits auf der Deckenschalung bzw. an der Deckenrandschalung auf Achse eingemessen und fixiert. Die für alle Handwerker gut sichtbaren Negativabdrücke werden für den Trockenausbau bzw. für alle weiteren Installationen im Innenbereich verwendet. Die Negativabdrücke am Deckenrand verwendet der Polier, um mit Schlagschnur oder Laser die Achsen direkt auf die frisch betonierte Decke zu übertragen. Bei Bedarf können diese auch für die Installation der Fassade verwendet werden.
ESG-Türverglasung Float hell für Türblatt 2110/985 mm

ESG-Türverglasung Float hell für Türblatt 2110/985 mm

ESG-Türverglasung Float hell 4 mm ESG Folienverpackt Artikelnummer: T1084747 Gewicht: 5.8 kg Oberflächen-Art: Glas Türdicke Hinweis: ca. 4 mm
Polarisationsoptiken

Polarisationsoptiken

Edmund Optics bietet diverse dichroitische, kristalline und Wire-Grid-Polarisationsfilter an. Dichroitische Strahlteiler besitzen ein ausgezeichnetes Preis-Leistungs-Verhältnis und sind mit großen Aperturen erhältlich. Kristalline Polarisationsfilter eignen sich ideal für Laseranwendungen, da sie hohe Zerstörschwellen und hohe Auslöschungsverhältnisse aufweisen. Wire-Grid-Polarisationsfilter eignen sich ideal für Breitbandanwendungen; sie können mit einem Drahtgitter das p-polarisierte Licht selektiv transmittieren und das s-polarisierte Licht reflektieren. S-polarisiertes Licht schwingt lotrecht zur Einfallsebene, p-polarisiertes Licht parallel dazu. Edmund Optics bietet außerdem eine breite Palette von Verzögerungsplatten nullter und höherer Ordnung sowie spezielle Polarisationsdreher und Fresnel-Rhomben an. Lineare Polarisationsoptiken: Wandeln zufällig polarisiertes Licht in linear polarisiertes Licht um Zirkulare Polarisationsfilter: Wandeln zufällig polarisiertes Licht in zirkular polarisiertes Licht um Polarisationstests: Hilfsmittel, die einen Polarisationstest ermöglichen Depolarisatoren: Wandeln polarisiertes Licht in nicht-polarisiertes Licht um
Optische Beschichtungen

Optische Beschichtungen

Hunderte Varianten von Standard- und kundenspezifischen Beschichtungen Edmund Optics® verfügt über umfangreiche Beschichtungsmöglichkeiten und Erfahrung in der Herstellung von Beschichtungen für moderne Diagnosegeräte, Bildverarbeitungsbaugruppen für raue Umgebungen sowie Anwendungen für das ultraviolette Spektrum (UV), das sichtbare Licht (VIS) sowie das Infrarot-Spektrum (IR). Alle Optiken werden gründlich gereinigt, beschichtet, in einer Reinraumumgebung geprüft sowie den vom Kunden gewünschten Umwelteinflüssen, Wärmebelastungen oder Haltbarkeitsprüfungen unterzogen. Nehmen Sie wegen weiterer Informationen über optische Beschichtungsoptionen bitte Kontakt mit uns auf.
Optische Filter

Optische Filter

Edmund Optics bietet diverse optische Filter für viele Anwendungen an, darunter auch Bandpassinterferenzfilter, Notchfilter, Kantenfilter, dichroitische und Farbglasfilter sowie Neutraldichtefilter. Optische Filter transmittieren oder blocken selektiv eine Wellenlänge oder einen Wellenlängenbereich. Optische Filter werden beispielsweise in der Fluoreszenzmikroskopie, Spektroskopie, klinischen Chemie oder in Bildverarbeitungsanwendungen eingesetzt. Optische Filter eignen sich ideal für Life Sciences, Bildverarbeitung oder in der Industrie. Bandpassfilter: Ideal für die Fluoreszenzmikroskopie, Spektroskopie, klinische Chemie oder Bildverarbeitung. Langpassfilter: Für Industrieanwendungen sowie Life-Sciences, um Teile des Spektrums zu isolieren, beispielsweise in der Mikroskopie sowie in Fluoreszenzgeräten. Kurzpassfilter: Für Life-Science-Anwendungen wie der Fluoreszenzmikroskopie oder zur Integration in eine Vielzahl von Geräten Notchfilter: Sie werden in der Raman-Spektroskopie, in der konfokalen oder Multiphotonen-Mikroskopie, in Laserfluoreszenzgeräten und anderen Anwendungen der Life-Sciences eingesetzt. Neutraldichtefilter: ND-Filter werden oft in Bildverarbeitungs- und Laseranwendungen eingesetzt, bei denen zu viel Licht die Kamerasensoren oder andere optische Komponente schädigen kann. Farb-/ Absorptionsfilter: Optische Farb- und Absorptionsfilter eignen sich ideal für die Bildverarbeitung und Industrieanwendungen. Dichroitische Filter: Dichroitische Filter werden in Anwendungen wie Fluoreszenzmikroskopie und Durchflusszytometrie verwendet, um ausgewähltes Licht in Richtung von Detektoren zu transmittieren. Laserfilter: Laserfilter blocken eine Wellenlänge oder einen Wellenlängenbereich und transmittieren die gewünschten Wellenlängen für diverse Laseranwendungen. Bildverarbeitungsfilter: Bildverarbeitungsfilter sind optische Filter, die die Bildqualität bei Bildgebungs- oder Bildverarbeitungsanwendungen verbessern sollen.
Optikkomponenten

Optikkomponenten

Optikkomponenten sollen Lichteigenschaften durch verschiedene Mittel verändern, beispielsweise durch Fokussierung, Filterung, Reflexion oder Polarisierung. Edmund Optics verfügt über einen sehr großen Lagerbestand von Standard-Optikkomponenten, beispielsweise eine umfangreiche Auswahl optischer Linsen, optischer Filter, optischer Spiegel, Fenster, Prismen, Strahlteiler oder Beugungsgitter. Optische Linsen werden zur Bündelung oder Streuung von Licht eingesetzt. Optische Filter werden zum selektiven Blocken oder für einen selektiven Durchlass einer bestimmten Wellenlänge oder eines Wellenlängenbereich verwendet. Optische Spiegel, Prismen oder Strahlteiler teilen oder ändern den Weg des Lichts. Fenster sollen empfindliche Komponenten, beispielsweise elektronische Sensoren oder Detektoren, vor Außeneinflüssen schützen. optische Linsen: Werden in vielen Anwendungen, von der Mikroskopie bis zur Laserbearbeitung, eingesetzt. optische Spiegel: Eignen sich für verschiedenste Anwendungen, beispielsweise die Strahllenkung, die Interferometrie, Bildgebung oder Beleuchtung. optische Filter: Werden beispielsweise in der Fluoreszenzmikroskopie, Spektroskopie, klinischen Chemie oder in Bildverarbeitungsanwendungen eingesetzt Fenster & Diffusoren: Flache, planparallele Platten, die oft als Schutz für elektronische Sensoren oder Detektoren vor äußeren Einflüssen verwendet werde Polarisationsoptiken: Werden in der Bildverarbeitung zur Verringerung von Spiegelungen oder Glanzlichtern, zur Erhöhung des Kontrasts und in der Spannungsoptik eingesetzt. Strahlteiler: Werden häufig für Laser- oder Beleuchtungssysteme eingesetzt. Strahlteiler eignen sich auch ideal für Fluoreszenzanwendungen, die optische Interferometrie sowie Halbleitergeräte oder Geräte der Life-Sciences. Prismen: Eignen sich ideal zur Strahlumlenkung oder zur Änderung der Orientierung eines Bildes. Beugungsgitter: Werden in der Spektroskopie eingesetzt sowie in Spektrophotometern oder Monochromatoren integriert. Infrarot-Optiken: EO bietet eine große Auswahl an Linsen, Fenstern, Spiegeln, Baugruppen und anderen Optiken an, die auf infrarote (IR) Anwendungen zugeschnitten sind.
Laseroptiken

Laseroptiken

Laseroptiken werden in vielen Lasergeräten oder Laseranwendungen eingesetzt, beispielsweise zur Strahllenkung oder Materialverarbeitung. Edmund Optics bietet diverse Laseroptiken, beispielsweise Laserlinsen, Laserspiegel, Laserfilter sowie eine Vielzahl anderer Komponenten für Laseranwendungen an. Laserlinsen sollen Laserstrahlen fokussieren, homogenisieren oder formen. Laserspiegel eignen sich ideal für Strahllenkungsanwendungen. Laserfilter transmittieren oder reflektieren einen Teil des Laserlichts. Laserfenster transmittieren bestimmte Wellenlängen oder schützen empfindliche Komponenten oder Arbeitsbereiche vor Streulicht. Laserspiegel: Sie zeichnen sich durch ausgezeichnete Oberflächenqualitäten aus und bieten eine minimale Streuung für Strahllenkungsanwendungen Laserlinsen: Sie werden zur Fokussierung von kollimierten Laserstrahlen in diversen Laseranwendungen eingesetzt Laserfenster: Sie haben eine hohe Transmission bei definierten Wellenlängen für Laseranwendungen oder dienen als Schutzfenster Laserfilter: Sie blocken eine Wellenlänge oder einen Wellenlängenbereich und transmittieren die gewünschten Wellenlängen für diverse Laseranwendungen Ultrakurzpulsoptiken: Sie sind speziell für Ultrakurzpulslaser mit kurzer Pulsdauer im Piko-, Femto- oder Attosekundenbereich
Laserspiegel

Laserspiegel

Laserspiegel sind speziell für den Einsatz in Laseranwendungen konzipiert. Edmund Optics bietet ein Sortiment von Laserspiegeln für den Einsatz vom extremen Ultraviolett- (EUV) bis zum fernen IR-Spektrum an. Laserspiegel für Farbstoff-, Dioden-, Nd:YAG-, Nd:YLF-, Yb:YAG-, Ti:Saphir-, Faser- und viele weitere Laserquellen sind als Planspiegel, rechtwinklige Spiegel, Konkavspiegel und andere Spezialformen erhältlich. Ebenfalls verfügbar sind Ultrakurzpuls-Laserlinienspiegel, die für hohe Reflexion bei minimaler Gruppenverzögerungsdispersion (GDD) für gepulste Femtosekundenlaser wie Er:Glass, Ti:Saphir und Yb:dotierte Laserquellen entwickelt wurden. Breitband-Laserspiegel: Breitband-Laserspiegel bieten ein hohes Reflexionsvermögen über einen großen Wellenlängenbereich und optimieren die Einsatzvielfalt von Lasersystemen mit mehreren Lasern, ungewöhnlichen Wellenlängen oder durchstimmbaren Laserquellen. Ultrakurzpuls-Laserspiegel: Ultrakurzpuls-Laserspiegel wurden auf hohe Laserzerstörschwellen sowie eine Reflexion von mindestens 99% für ultrakurze Laserpulse ausgelegt.
Dichroitischer Beleuchtungsfilter FS green 505550

Dichroitischer Beleuchtungsfilter FS green 505550

Dichroitischer Beleuchtungsfilter für klassische Leuchtmittel und für LED. Diese Farbfilter für Beleuchtungsanwendungen sind aus Glas gefertigt und damit extrem langlebig und hitzebeständig. Die mineralische Nanobeschichtung verändert ihren Farbton über die gesamte Lebensdauer des Filters nicht. Dadurch sind unsere Filter besonders für permanente Beleuchtungen und den Einsatz im Außenbereich geeignet.
Dichroitischer Beleuchtungsfilter FE cyan

Dichroitischer Beleuchtungsfilter FE cyan

Dichroitischer Beleuchtungsfilter für klassische Leuchtmittel und für LED. Diese Farbfilter für Beleuchtungsanwendungen sind aus Glas gefertigt und damit extrem langlebig und hitzebeständig. Die mineralische Nanobeschichtung verändert ihren Farbton über die gesamte Lebensdauer des Filters nicht. Dadurch sind unsere Filter besonders für permanente Beleuchtungen und den Einsatz im Außenbereich geeignet.
Dichroitischer Farbeffekt-Filter "FS Orange 585" mit Beleuchtung

Dichroitischer Farbeffekt-Filter "FS Orange 585" mit Beleuchtung

Der Farbeffekt "Orange" ergibt sich bei Transmission und Blau bei Reflexion, hier in 2 Ansichten der Nacht-Situation Die bei der Draufsicht auf das Filterglas erscheinende Farbe ist stets die Komplementärfarbe zu der, die bei der Durchsicht entsteht.
Dichroitscher Farbeffekt-Filter "FS Magenta 455645" – Nachtsituation

Dichroitscher Farbeffekt-Filter "FS Magenta 455645" – Nachtsituation

Der Farbeffekt "Magenta" ergibt sich bei Transmission und Grün bei Reflexion, Ansicht Tag-Situation. Die bei der Draufsicht auf das Filterglas erscheinende Farbe ist stets die Komplementärfarbe zu der, die bei der Durchsicht entsteht.
Entspiegelungen

Entspiegelungen

Entspiegelungen = entspiegeltes Glas = AR-Filter = Antireflexionsfilter Anwendung für Industrie und Medizintechnik Die AR-Filter werden mit folgenden Materialien / Stärken / Größen angeboten: Borofloat / Floatglas / Weißglas 3 mm von 20 x 20 mm bis 1.080 x 800 mm Borofloat / Floatglas / Weißglas 4 mm von 20 x 20 mm bis 1.080 x 800 mm Borofloat / Floatglas / Weißglas 5 mm von 20 x 20 mm bis 1.080 x 800 mm Darüber hinaus können wir auch deutlich kleinere Filter mit dünnerem Material (z. B. 1,1 mm) produzieren . Wir können die Filter sowohl rund als auch in beliebigen anderen Formen schneiden – siehe Zuschnitt-Service. Bei 3-D-Druckern, die die 3-dimensionale Struktur über ein UV-aushärtendes Polymer realisieren, kommen zum Aufbau des Polymer­tanks entspiegelte Scheiben zum Einsatz, die eine hohe Trans­mission des zur Aushärtung benötigten UV-Lichts gewähr­leisten. Die verwendete Brei­tband­entspiegelung AR4 350-420 ist für den Durchlass der benötigten UVA-Strahlung optimiert. Unsere Filtertypen: Filtertyp Reflex­ion PDF AR4 350-420 Entspiegelung im nahen UV-Bereich Anwendung: Operations­leuchten Entspiegelung - AR-Filter AR2-550 für OP-Leuchten Bei Operations­leuchten kommt als Abschluss­scheibe eine für das sichtbare Licht entspiegelte und definiert licht­streuende Glasscheibe zum Einsatz, Typ AR2-550 auf Glanzwert-geätztem Glas. Sie gewährleistet eine hohe Licht­effizienz, schatten­freies Arbeiten und einen hygienischen Abschluss zum Operations­bereich hin. Unsere Filtertypen: Filtertyp Reflex­ion AR2-550 < 0,5% bei 550 nm AR4 < 1% für λ= 450 nm - 650 nm Anwendung: Transmissions­­­erhöh­ende Schutz­gläser für Laser Transmissions­erhöhende Schutzgläser für Laser, Filter AR2 1064 Entspiegelte Frontgläser schützen kostspielige Laser-Strahlführungs­optiken im harten Industrieeinsatz, z.B. Typ AR2-1064 auf Borofloat für NdYAG-Schweißlaser. Unsere Filtertypen: Filtertyp Reflex­ion AR2-550 < 0,5% bei 550 nm AR2-1064 < 0,5% bei gewünschter Wellenlänge 1064 nm
Opische Filter für die Warenpräsentation FE Pink

Opische Filter für die Warenpräsentation FE Pink

Für das Licht, das die Qualität und Frische Ihres Angebots zeigt, Appetit macht und die Kauflust stimuliert. Der dichroitische Filter FE Pink eignet sich besonders zur optimalen Beleuchtung von Fleischwaren, Wurst und rotem Fisch. Die Eigenfarbe der Ware wird herausgestellt und die Ware wird weniger wärmebelastet.
IR-Filter / Wärmereflexionsfilter

IR-Filter / Wärmereflexionsfilter

Infrarotfilter (Wärmereflexionsfilter), zumeist einfach "IR-Filter" abgekürzt. dienen z.B. zur Erzeugung sonnenähnlichen Lichts (Sonnensimulation) oder der Reflexion unerwünschter Wärme in einem Lichtstrahl.
TIS-FD-08

TIS-FD-08

Frequenzverdoppelter durchstimmbarer Ti:Saphir Laser mit schmaler Linie (Tunable frequency doubled Ti:Sapphire laser with narrow line width) Das Model TIS-FD-08 ist ein weit durchstimmbarer Ti:Saphir Laser mit integrierter Intracavity-Frequenzverdopplung. Dieser kosteneffizienter CW Laser erzeugt schmale Linie und findet seine Anwendung in der Spektroskopie von Halbleitermaterialien und anderen Bereichen. Die Wellenlänge der Fundamentalwelle des Lasers lässt sich im Bereich 700-950 nm und die der zweiten Harmonischen im Bereich 350-475 nm durchstimmen. Die Linienbreite beträgt dabei 0,05 nm bis 0,01 nm. Der schmalbandige Laser kann auch in der kombinierten Konfiguration Ti:Sa + Dye (Modell TIS / DYE-FD-08) angefertigt werden, die eine Erweiterung der fundamentalen Strahlung auf 550-700 nm, sowie der zweiten Harmonischen auf 275-350 nm ermöglicht. Die Ausgangsleistung der zweiten Harmonischen übersteigt 50 mW bzw. 100 mW, wenn der Laser mit 5 W bzw. 10 W gepumpt wird. Im Model TIS-FD-08 ist ein linearer Resonator verbaut. Das hat zu Folge, dass die zweite Harmonische in beide Richtungen des nichtlinearen Kristalls ausstrahlt. Um die gesamte frequenzverdoppelte Strahlung auf einer Seite des nichtlinearen Kristalls zu sammeln, wird ein hochreflektierender Spiegel (M4) verwendet, welcher sowohl die Grundwelle, als auch die zweite Harmonische reflektiert. Auf der anderen Seite des Kristalls ist ein weiterer dichroitischer Spiegel (M5) installiert, dieser ist jedoch für die Grundstrahlung reflektierend und für die zweite Harmonische transparent (T> 80-85%). Durch diesen Spiegel wird die zweite harmonische Strahlung aus dem Resonator "rausgelassen", wo hingegen die Grundstrahlung in den Resonator zurück reflektiert wird. Wellenlänge: 700-950 / 350-475 nm Ausgangsleistung: > 1.5 W (10 W Pumpleistung) Linienbreite: < 0,05-0,01 nm
FD-SF-07

FD-SF-07

Effizienter resonanter Frequenzverdoppler Efficient resonant frequency doubler - Verdopplung von Quasi-CW - Frequenzsummenbildung (sum frequency) - Frequenzvervielfachung Der resonante Frequenzverdoppler FD-SF-07 ermöglicht eine effiziente Erzeugung der zweiten Harmonischen von CW-Einfrequenzlasern wie Ti:Saphir- /Farbstofflasern, DPSS-Lasern (Nd: YVO4, Yb:YAG), Faserlasern (Yb, Er) und anderen. FD-SF-07 bietet eine verbesserte Verdoppelungseffizienz und eine ultrastabile Leistung, auch wenn dieser mit Lasern gepumpt wird, die nicht frequenzstabilisiert sind oder deren Betrieb in einer Umgebung mit extremen äußeren akustischen Störungen und Vibrationen stattfindet. Im Verdoppler ist ein stabiler und kompakter Ringresonator verbaut, welcher mit einem ultraschnellen zweistufigen Adaptionssystem ausgestattet ist. Dieses System passt die Eigenfrequenz des Resonators an die der Eingangsstrahlung an und garantiert somit eine hohe Stabilität der Ausgangsleistung der zweiten Harmonischen. Der optimierte Resonator in Kombination mit hochwertigen Spiegeln und Hochleistungs-AR-Beschichtungen der optischen Oberflächen des nichtlinearen Kristalls gewährleisten eine hohe Ausgangsleistung. Wird der Laser mit 1 Watt gepumpt, so erreicht die frequenzverdoppelte Strahlung folgende Werte: Mehr als 200 mW im Bereich 475-550 nm (für 950-1100 nm Eingang) (auf Anfrage mehr als 350 mW) Mehr als 250 mW im Bereich 350-475 nm (für 700-950 nm Eingang) Mehr als 200 mW im Bereich 275-350 nm (für 550-700 nm Eingang) Mehr als 150 mW im Bereich 244-275 nm (für 488-550 nm Eingang) Wird der Verdoppler mit höheren Leistungen gepumpt, so kann die Verdopplungseffizien sogar 40% (gepumpt mit Ti: Saphir Laser)bzw. 25% (gepumpt mit grünem DPSS (532nm) / Yb:YAG-Laser (515 nm)) übersteigen. Die elektronische Steuereinheit des Verdopplers "FD-SF-07" ist serienmäßig mit einem zusätzlichen Steuerfotodetektor ausgestattet, der die Optimierung der Resonatorausrichtung sowohl für die Grundwelle als auch für die zweite harmonische Strahlung stark vereinfacht. Die Elektronik steuert auch das schnelle zweistufige System für die automatische Anpassung der Resonatorfrequenz an die Frequenz der Eingangsstrahlung (langsamer und schneller Loop, realisiert mit zwei Piezos). Effizienter Betrieb auch mit Lasern ohne Frequenzstabilisierung möglich (wie TIS-SF-07, DYE-SF-07) Der Frequenzverdoppler FD-SF-07 bietet nun die Möglichkeit nicht nur frequenzvedoppelte Laserstrahlung, sondern auch Frequenzvervielfachung zu erzeugen oder Summenfrequenz von zwei verschiedenen Wellenlängen zu bilden, z.B.: Input 1: 532 nm (Mozart 532) Input 2: 690 - 1025 nm, 1,5 W (TIS-SF-07) Output: 300 - 350 nm, bis zu 50 mW und mehr In diesem Beispiel wird die Linie des Ti:Saphir-Lasers anhand des Ausgangssignals des Verdopplers angepasst. Auch besteht die Möglichkeite Quasi-CW Laserstrahlung zu verdoppeln. Hier ist der Aufbau des Verdopplers so gestaltet, dass sich die Resonatorlänge des Verdopplers an die Repititionsrate der Fundamentalen Strahlung anpassen lässt. a) Effizienz von IR zu VIS (1 W Input): > 20% (> 35%) b) Effizienz von rot zu blau (1 W Input): > 25% c) Effizienz von gelb zu UV (1 W Input): > 20% d) Effizienz von grün zu UV (1 W Input): > 15% Linienbreite: < 1 MHz
DYE-SF-07

DYE-SF-07

Durchstimmbarer Einfrequenz Farbstofflaser (Tunable single frequency dye laser) CW Farbstofflaser DYE-SF-07 ist der erste Vertreter der neuen Generation von modernen Farbstofflasern. Der Farbstofflaser lässt sich vergleichbar einfach und bequem bedienen, wie ein durchstimmbarer Festkörperlaser. Die Ähnlichkeit dieses Lasers zu einem Festkörperlaser kommt davon, dass DYE-SF-07 wahlweise auch als Ti:Sa-Laser in Betrieb genommen werden kann. Der Single-Frequency Laser DYE-SF-07 ist eine leistungsstarkes System für durchstimmbare Strahlung im Bereich von 520 bis 700 nm (grün-gelb bis rot). Die Strahlparameter eignen sich perfekt für Forschung, z.B. im Bereich Atomkühlung und ultra-hochauflösende Spektroskopie. Die Ausgangsleistung des Lasers übersteigt 1,5 W bei einer 10 W Pumpleistung mit der Wellenlänge 532 nm, 515 nm oder der blau-grünen Linien des Ar-Lasers (488 nm Pumplaser ist für den Betrieb im Bereich 520 - 550 nm notwendig) Die horizontale Ausrichtung der Resonatorebene des DYE-SF-07 ermöglicht eine kompakte Anordnung der Resonatorelemente auf einer starren und massiven vibrationsisolierenden Grundplatte. Dieser Aufbau gewährleistet eine hohe Stabilität der Strahlparameter des Farbstofflaser. Im erweiterten Modell DYE-SF-077 ist eine aktive Frequenzstabilisierung durch eine externe thermisch stabilisierte cavity verfügbar. Dadurch ist Linienbreite von weniger als 100 kHz/s und Linienstabilität unter 4MHz/Std möglich. Der Standardspektralbereich des Lasers 520 - 700 nm kann durch die Verwendung des effizienten externen Frequenzverdoppler FD-SF-07 auf einen Bereich von 260 - 350 nm erweitert werden. Dabei können Leistungen über 300 mW erreicht werden (bei 1,5W @ fundamentale Wellenlänge) Wellenlänge: 520-700 nm Ausgangsleistung: > 1,5 W Scanbereich: 6 / 20 / 40 GHz Linienbreite: < 10 MHz/s (1MHz/0,1s) rms
Filter für die Warenpräsentation von Brot und Gebäck: M3-400

Filter für die Warenpräsentation von Brot und Gebäck: M3-400

Für das Licht, das die Qualität und Frische Ihres Angebots zeigt, Appetit macht und die Kauflust stimuliert. Der dichroitische Filter M3-400 lässt Brot, Gebäck und Kuchen wärmer und krosser und damit frischer und appetitlicher wirken.
M3 Filter

M3 Filter

Teilerspiegel / Halbtransparenter Spiegel für Beleuchtungsanwendung Bei angeschalteter Lichtquelle scheint dieses Licht klar durch, im ausgeschaltetem Zustand tritt hingegen die Reflexion des Filters in den Vordergrund.
allPIXA SWIR

allPIXA SWIR

Die allPIXA SWIR ist die erste kurzwellige Infrarot-Zeilenkamera (SWIR) der Chromasens allPIXA-Familie. Der InGaAs-Sensor ermöglicht die Integration für mehrere Bildverarbeitungsanwendungen. Die Kamera bietet einen ungekühlten Sensor mit 1k Auflösung und 12,5 μm Pixelgröße für hohe Auflösung, hohe Empfindlichkeit und einer Zeilenrate von 40 kHz. GenICam-konforme GigE Vision- und CameraLink-Schnittstellen ermöglichen eine einfache Integration in bestehende Bildverarbeitungssysteme. Sensortyp: Linearer InGaAs Sensor Anzahl der Pixel: 1.024 Pixel x 1 Pixelgröße: 12,5 µm x 12,5 µm Stromversorgung: 6 W
TIS/DYE-SF-07

TIS/DYE-SF-07

CW Einfrequenz-Ringlaser auf Farbstoff- und Ti:Saphir-Basis (CW Single frequency ring laser with dye and Ti:Sapphire) Der Einfrequenz-Ringlaser TIS / DYE-SF-07 ist das Ergebnis neuer Ideen im Bezug auf optimale Kombination von Festkörper- (Ti: Sapphire) und Farbstofflaser in einem einzigen Gerät. Beim TIS/DYE-SF-07 wird das "Umschalten" zwischen Ti:Saphir- und Farbstofflaserbetrieb durch Austausch einiger Resonatorelemente realisiert. Die meisten Komponenten, wie ein Teil der optischen Elemente, Justagekomponenten und elektronische Steuereinheit bleiben für beide Laserarten unberührt. Zum ersten Mal wurde beim Model TIS/DYE-SF-07 ein "doppeloptischer" Aufbau auf Basis eines Ringresonators in horizontaler Ausrichtung realisiert. Solch eine horizontale Ausrichtung erlaubt eine kompakte Positionierung von optischen Elementen auf einer starren und massiven vibroisolierten Platte, was eine sehr hohe Stabilität der Strahlparameter für beide Laserbetriebsarten (Ti:Saphir und Farbstoff) ermöglicht. Der Laser TIS/DYE-SF-07 ist ein passiv stabilisierter single frequency Laser. Die Linienbreite in der Ti:Saphir-Konfiguration beträgt ca. 5 MHz rms und in der Farbstoff-Konfiguration 10 MHz rms. Aktive Frequenzstabilisierung ist durch einen externen thermostabilisierten Resonator in Modell TIS/DYE-SF-777 verfügbar. Dieser bietet Linienbreiten von weniger als 10 kHz/s rms für Ti: Saphir und weniger als 100 kHz/s rms für Farbstofflaser. Der Standardspektralbereich des Lasersystems von 550-1050 nm kann mit Hilfe unseres effizienten externen Frequenzverdopplers FD-SF-07 auf den Bereich von 275 bis 525 nm erweitert werden. Wellenlänge: 550-700 nm / 700-1050 nm Ausgangsleistung: > 1.8 W (10 W Pumpleistung) Scanbereich: 5/6 GHz oder 25/30 GHz (40/45 GHz auf Anfrage) Linienbreite: 4 MHz/1s rms (Ti:Saphir) und 10 MHz/1s rms (Farbstoff)
TIS/DYE-SF-777

TIS/DYE-SF-777

CW Single Frequency Laser auf Farbstoff- und Ti:Saphir-Basis (Single frequency ring laser with dye and Ti:Sapphier) Der CW Einfrequenz-Ringlaser TIS/DYE-SF-777 ist eine verbesserte Version des TIS/DYE-SF-07 und ist eine optimale Kombination von Festkörper- (Ti:Sa) und Farbstofflaser in einer Einheit. Beim TIS/DYE-SF-777 wird das "Umschalten" zwischen Ti:Saphir- und Farbstofflaserbetrieb durch Austausch einiger Resonatorelemente realisiert. Die meisten Komponenten, wie ein Teil der optischen Elemente und elektronische Steuereinheit bleiben für beide Laser unberührt. Beim Model TIS/DYE-SF-777 ist ein "doppeloptischer" Aufbau auf Basis eines Ringresonators in horizontaler Ausrichtung realisiert. Solch eine horizontale Ausrichtung erlaubt kompakte Positionierung von optischen Elementen auf einer starren und massiven vibroisolierten Platte, was eine sehr hohe Stabilität der Strahlparameter für beide Laserbetriebsarten (Ti:Saphir und Farbstoff) ermöglicht. Im Gegensatz zum Model TIS/DYE-SF-07, bietet die aktive Frequenzstabilisierung beim TIS/DYE-SF-777 Linienbreiten von weniger als 5 kHz/s rms für Ti:Saphir- und weniger als 100 kHz/s rms für Farbstoffkonfiguration. Der Standardspektralbereich des Lasersystems 550 - 1050 nm kann mit Hilfe unseres effizienten externen Frequenzverdopplers FD-SF-07 auf den 275 - 525 nm-Bereich erweitert werden. Wellenlänge: 550-700 nm / 700-1050 nm Ausgangsleistung: > 1.8 W (10 W Pumpleistung) Scanbereich: 5/6 GHz oder 18/20 GHz (40/45 GHz auf Anfrage) Linienbreite: 5 kHz/s rms (Ti:Saphir) und 100 kHz/s rms (Farbstoff) Linienstabilität: < 40 MHz/Std. (< 4 MHz/Std. auf Anfrage)
UV-Blocker = UV-Sperrfilter

UV-Blocker = UV-Sperrfilter

Sperrfilter für UV-Licht, z. B. zur Haut­bestrahlung, für Film / Foto oder für nächtliche Beleuchtung (Insekten­schutz). Die UV-Sperrfilter werden mit folgenden Materialien / Stärken / Größen angeboten: Borofloat / Floatglas / Weißglas 3 mm von 20 x 20 mm bis 1.080 x 800 mm Borofloat / Floatglas / Weißglas 4 mm von 20 x 20 mm bis 1.080 x 800 mm Borofloat / Floatglas / Weißglas 5 mm von 20 x 20 mm bis 1.080 x 800 mm Darüber hinaus können wir auch deutlich kleinere Filter mit dünnerem Material (z. B. 1,1 mm) produzieren .